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Abstract—In this paper, we investigate the effects of
severe channel fading in the scenario of distributed deep
learning-based joint source-channel coding (DJSCC) for image
transmission without perfect channel state information (CSI).
To tackle the challenges posed by imperfect CSI, we propose a
robust DJSCC (RDJSCC) scheme that operates at three levels:
modulation, encoding, and decoding, respectively. Firstly, at
the modulation level, we adopt orthogonal frequency division
multiplexing (OFDM) modulation for exploring the trade-
off between reconstruction performance and peak-to-average
power ratio (PAPR). Secondly, at the encoding level, two
parameter-efficient operators are introduced to combat channel
fading with low encoding complexity. Finally, at the decoding
level, we divide the decoding process into two stages, i.e.,
denoising and recovery, aiming to maximize the correlation
between the encoded representations. Theoretic analysis and
simulation results show that our proposed RDJSCC can
effectively alleviate the effects of severe fading with imperfect
CSI, leading to an improved reconstruction performance while
maintaining low PAPR and encoding complexity.

I. INTRODUCTION

6G mobile networks are envisioned to enable intelligent
transmission with extremely low end-to-end latency, even
in severe fading environments (e.g., an autonomous driving
scenario in Fig. 1). Deep learning (DL)-based joint source-
channel coding (DJSCC) can be a potential technology
for 6G [1]–[4], since DJSCC can dynamically allocate
bandwidth to source or channel coding and thus exhibit a
graceful performance degradation in fading environments.
Further, [2]–[4] extended the DJSCC to dynamic channel en-
vironments and allocated bandwidth based on image content,
achieving a better end-to-end transmission performance.

The majority of existing works on DJSCC focus on
point-to-point communication and seldom consider the
distributed communication among multiple nodes. For
example, in a distributed sensor network for autonomous
driving (described in Fig. 1), it is challenging to encode
correlated sources distributed across different locations
without global communication [5]. Although the theoretical
framework of distributed source coding (DSC) provides a

promising approach to handling data compression problems
[6], practical DSC systems have not been widely used due
to challenges in designing efficient DSC ystems to capture
complex correlations between sources. [7] and [8] attempted
to apply DJSCC to distributed scenarios of additive white
Gaussian noise (AWGN) channel and Rayleigh channel with
perfect channel state information (CSI), while neglecting the
impacts of severe fading channel with imperfect CSI on the
correlation of sources.
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Fig. 1. An autonomous driving example for illustrating a distributed sensor
network, where fast vehicle motion leads to severe channel fading and thus
degrades the distributed transmission performance.

In this paper, we deploy DJSCC in a distributed sensor
network for image transmission under a severe fading
channel without perfect CSI. Our goal is to mitigate
the effects of severe fading channel on the encoded
representations and thus improve the system’s robustness.
To the best of our knowledge, distributed DJSCC in such a
context has not been studied before. To fill this research gap,
we propose a robust DJSCC (RDJSCC) scheme, which
is specially designed for distributed sensor networks under
severe fading channels. The proposed RDJSCC scheme
mitigates the effects of severe fading at three levels:
modulation, encoding, and decoding while exploring trade-
offs among peak-to-average power ratio (PAPR), encoding
complexity, and reconstruction performance, respectively.



II. RELATED WORKS

DJSCC: DJSCC is essentially an autoencoder over a
noisy channel applying DL to JSCC as an encoder-
decoder pair. [1] introduced the first DJSCC method, which
proved the superiority of DJSCC in low signal-to-noise
ratio (SNR) environments. To further improve the rate-
distortion (RD) performance, [4] introduced a hyperprior
as side information and integrated Swin Transformer
as the backbone. Leveraging the advantages of digital
modulation, [9], [10] incorporated orthogonal frequency
division multiplexing (OFDM) into DJSCC. To adapt a single
DJSCC across different channel conditions and compression
ratios, adaptive strategies were also widely researched [2]–
[4]. In addition, task-oriented DJSCC also attracted great
attention [11], focusing on jointly optimizing DJSCC with
downstream tasks in a task-oriented manner to achieve edge
inference with low latency.

DL-based DSC: DSC is also known as the Wyner–Ziv
scenario [6], which addresses the lossy source coding
with correlated sources (which are also referred to as
side information, while the lossless scenario is known as
Slepian–Wolf coding). Inspired by the success of learning-
based image compression, an early framework for learning-
based distributed image compression was proposed in
[12], which utilized mutual information between distributed
images for efficient compression. [13] further improved this
compression framework, by extracting common information
rather than feeding correlated sources to the decoder directly.
There have been a growing interests in utilizing the
correlated sources efficiently, interested readers can refer to
[5] and references therein.

III. PROBLEM FORMULATION

A. Scenario

We consider the following distributed wireless image
uplink transmission scenario. As shown in Fig. 2, sensor
s ∈ RM and its correlated version (side information) sside ∈
RM with a joint distribution p(s, sside) capture two views
of a same object. Two sensors independently transmit their
compressed representations (x,xside) to a central decoder
over a severe fading channel. We define (x̂, x̂side) as the
corrupted version of (x,xside) by channel. We use x̂c to
denote the common features between x̂ and x̂side, which
satisfy the Markov chain s → x̂c → sside. As a remark,
unlike the setting in [7], [13], where the decoder can only
losslessly access one source, we assume the decoder can
access both correlated sources undergoing channel fading,
which reflects real-world scenarios.

According to the Wyner-Ziv theorem [6], the expected
length for lossy compression of (s, sside), i.e., joint entropy,
is Rs +Rsside = H(s, sside) when separate encoding and
joint decoding are employed. Based on the Wyner-Ziv setup,
the rate-distortion function with a distortion metric d(·, ·)
is given by Rs|sside(d) = inf I(s; x̂ | x̂side), where the
infimum is taken over all random variables. Hence, we define

a reconstruction mapping under a given distortion C as
g : X̂side×X̂ → Ŝ with constraint E [d(s, f(x̂, x̂side))] ≤ C.

B. Fading Channel

Unlike AWGN channel adopted in [7], [8], the received
fading signal in this paper is modeled as follows:

x̂ = h ∗ x+ w, (1)

where the impulse response of the multipath channel consists
of L paths, i.e., h ∈ CL. w ∼ CN (0, σ2Ik) is the AWGN.
Each hl follows the complex Gaussian distribution with
zero mean and variance σ2

l , i.e., hl ∼ CN (0, σ2
l ) for

l = 0, 1, . . . , L − 1. The variance σ2
l of each path follows

the exponential decay, i.e., σ2
l = αle

− l
γ , where γ represents

the delay and αl is a normalization coefficient. The sum of
variances of all paths equals to 1, i.e.,

∑L−1
l=0 σ2

l = 1.

C. The Optimization Goal

In this paper, we use DL as an encoder-decoder pair [1].
Specifically, the distribution of latent representation qx̂|s(x̂|s)
is learnt by a transform f (parameterized by ϕ) at the
encoder as x = f(s;ϕ), x ∈ CM

′

and compression ratio is
defined as R ≜ M

′
/M . Similarly, the distribution of latent

representation of correlated sources is parameterized by ψ
as x̂side = f(sside;ψ). Finally, the reconstructed image can
be derived from a DL-based decoder as ŝ = g(x̂, x̂side;θ),
where θ denotes the parameters of the decoder. In this
setting, we aim to approximate the joint distribution of the
random variables as p(s, sside, x̂, x̂side), which is intractable.
To acquire a tractable solution, a factored variational
approximation of the posterior distribution is introduced as
qϕ(x̂, x̂side | s, sside).

Es,sside∼p(s,sside)DKL[qϕ(x̂, x̂side | s, sside)∥p(x̂, x̂side | s, sside)]

= Es,sside∼p(s,sside)Ex̂,x̂side∼qϕ

(
log qϕ(x̂ | s)qϕ(x̂side | sside)

−
(
log pθ(s | x̂side, x̂)︸ ︷︷ ︸

Ds

+ log p (x̂)︸ ︷︷ ︸
Rx̂

+ log p (x̂side)︸ ︷︷ ︸
Rx̂side

))
+ const.

(2)

(ϕ∗,θ∗) = argmin
ϕ,θ

Es [d (s, ŝ)] . (3)

We minimize the Kullback-Leibler (KL) divergence
between the approximate density qϕ(x̂, x̂side | s, sside) and
the true posterior p(x̂, x̂side | s, sside) as (2). The first term
in the KL divergence can be technically dropped [4]. The
term Ds represents the reconstruction distortion, and we
adopt peak signal-to-noise ratio (PSNR) to qualify image
transmission distortion based on the mean-squared error
(MSE). Rx̂ and Rx̂side

denote the compression ratios of
x̂ and x̂, respectively. Our goal is to address the effects
of severe fading channel on distributed image transmission
performance based on a fixed compression ratio, i.e., Rx̂ and
Rx̂side

are constant. In this regard, we use the commonly
employed MSE as the loss function, as defined in (3).
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Fig. 2. Our proposed RDJSCC scheme. The encoder and decoder of RDJSCC are stacked by different operator blocks. Different operator blocks
adopt a residual connections structure, where the operator can be ACmix, involution, standard convolution or transpose convolution, and ↓/↑ denotes
downsampling/upsampling.

IV. METHODS

To mitigate the effects of a severe fading channel
on the encoded representations in a distributed wireless
image transmission system, the proposed RDJSCC employs
three key techniques to enhance the robustness of image
transmission: modulation level, encoding level, and decoding
level, respectively.

A. Modulation Level
We apply OFDM to DJSCC, aiming to mitigate the effects

of severe fading, which is inspired by [9]. As shown in Fig.
2, each encoded representation x is power normalized and
then allocated with an OFDM packet. Each packet contains
Ns information symbols and Np pilot symbols. The pilot
symbols xp ∈ CNp×Nc are known to both the transmitter and
receiver. Under the OFDM modulation setting, x represents
the frequency domain symbol. First, x selects Nc subcarriers,
i.e., x is reshaped as x ∈ CNs×Nc . Then, symbols on all
subcarriers are synthesized into a single time-domain symbol
X ∈ CNs×Nc through inverse discrete Fourier transform
(IDFT) denoted as, X = FH

Nc
x, where FNc

is an Nc-
dimensional DFT matrix and FH

Nc
is an IDFT matrix. Next,

a cyclic prefix (CP) of length Lcp is added on the time-
domain symbol X , yielding Xcp ∈ CNs×(Nc+Lcp). The
pilot symbol xp is also performed IDFT and added CP
addition, then concatenated with Xcp to form an OFDM
symbol Xofdm ∈ C(Ns+Np)×(Nc+Lcp).

After adding pilots, Xofdm is transmitted through the
fading channel as (1). When the base station receives X̂ofdm

(the corrupted version of Xofdm), the OFDM demodulation
is performed. This involves removing the CP, applying DFT
to obtain the corrupted frequency-domain symbols x̂ and
the corrupted pilot symbols x̂p. The correlated source xside

experiences the same process as x. The procedure is also
illustrated in Algorithm 1.

It should be pointed out that the proposed method utilizes
discrete-time analog transmission (DTAT), where baseband
complex symbols are transmitted directly after OFDM
modulation, rather than using passband transmission of

Algorithm 1: The proposed RDJSCC method.
Input: Training data (s, sside); the pilot symbols

xp ∈ CNp×Nc ; learning rate η0; the training
epochs of global model T ; the batch size of a
training epoch B;

Output: Trained parameters;
1 for (s, sside) ∈ Dtrain do
2 Γ ← Randomly generate uniform SNR;
3 x ∈ CNs×Nc ← f(s,Γ;ϕ); ▷Encoder
4 ▷Modulation
5 X ∈ CNs×Nc ← FNc(x);
6 Xcp ∈ C(Ns+Lcp)×Nc ← CP(X , CP );
7 Xofdm ∈ C(Ns+Lcp)×(Nc+Np) ← Pilot(Xcp,xp);

8 X clip
ofdm ← Clip(Xofdm,xp);

9 ▷Through the fading channel
10 X̂ clip

ofdm ← h ∗X clip
ofdm + w;

11 x̂← X̂ clip
ofdm; ▷Demodulation

12 ▷xside is processed by the same procedure with x
13 ŝ = g(x̂, x̂side,Γ;θ); ▷Decoder
14 end
15 Calculate the loss d(s, ŝ);
16 Update model parameters (ϕ,θ).

digital signals [10]. This approach combines the advantages
of OFDM (i.e., overcoming frequency-selective fading)
with DTAT. However, there is a trade-off between PAPR
and performance in OFDM-based DJSCC system. [10]
demonstrated that the high PAPR of DJSCC could be
mitigated by incorporating clipping into the training process
as,

X clip
ofdm =

{
Xofdm, if |Xofdm| ≤ ρX̄ofdm

ρX̄ofdm, if |Xofdm| > ρX̄ofdm,
(4)

where X clip
ofdm represents the clipped signal, ρ represents the

clipping ratio and X̄ofdm represents the average amplitude



of Xofdm. The clipping ratio ρ should be selected properly
to avoid destroying the orthogonality among subcarriers. We
incorporate clipping into the training process of RDJSCC to
strike the balance between PAPR and performance.

B. Encoding Level

Next, we aim to combat severe fading at the encoding
level. Generally, increasing the model capacity of the encoder
improves encoding performance [4]. This is because a high-
capacity encoder can capture high-level semantic features
for source compression and noise resistance. However, in
a distributed wireless sensors network, sensors are often
resource-constrained, which poses a challenge in employing
a model with high capacity. Hence, there exists a trade-off
between model capacity and performance in the proposed
RDJSCC. Here, we investigate the above trade-off at
the encoding level. Specifically, two parameter-efficient
operators, namely involution and ACmix, are introduced at
the encoder, as illustrated in Fig. 2.
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Fig. 3. An involution example when G = 1. C, H , and W denote
the channel dimension, height, and width, respectively. Involution kernels
are generated from input feature tensors. Specifically, Hi,j = δ(Ti,j),
where Ti,j indexes a pixel and Hi,j is conditioned on Ti,j . δ is
formulated as δ(Ti,j) = W1φ(W0Ti,j), which is realized by two
linear transformers, W1 ∈ R(K×K×G)×C

r , W0 ∈ R
C
r
×C , along with

batch normalization with activation functions φ. Here, the reduction ratio r
denotes a hyperparameter that signifies the intermediate channel dimension.

1) Involution: Involution addresses the limitations of
adaptability related to different spatial positions and inter-
channel redundancy. By leveraging spatial-specific and
channel-agnostic approaches, involution achieves parameter-
efficient feature extraction [14]. Involution process can be
formulated as (5), where H ∈ RH×W×K×K×G is a
involution kernel, k ∈ {0, 1, · · · , Cout}, Cout represents the
number of output channels, and G represents the number of
groups of channels, where channels within the same group
share the involution kernel, resulting in a channel-agnostic
characteristic. Fig. 3 provides an example when G = 1.

Zi,j =
∑
p,q

Hi,j,p,q,⌈kG/Cin⌉Ti+p−⌊K/2⌋,j+q−⌊K/2⌋,k. (5)

2) ACmix: As illustrated in Fig. 4, ACmix is introduced
to capture the dependencies of encoded representations in
a parameter-efficient manner. It combines convolution and
self-attention [15], as illustrated in Fig. 4. ACmix partitions

both convolution and self-attention into two stages. Note that
convolution and self-attention share the same standard 1 ×
1 convolutions during the partitioning process, which helps
reducing computational overhead.
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Fig. 4. An example of ACmix. Specifically, ACmix partitions the
convolution process into two stages. At Stage I, projections are realized
using a standard 1 × 1 convolution. And then, the output feature tensors
are fed into a fully connected layer to generate K2 feature tensors
Z̃
(p,q)
ij . At Stage II, the feature tensors Z̃

(p,q)
ij are shifted, specifically

Z̃i,j = Zi+∆x,j+∆y , ∀i, j, where ∆x and ∆y denotes horizontal and
vertical displacements, respectively. Finally, the shifted feature tensors are
aggregated to form Zi,j . Meanwhile, ACmix partitions the self-attention
into two stages. Stage I is similar to that of convolution, where Wq,k,v are
parameter matrices used for projection. At Stage II, attention weights are
calculated, and the value matrices are aggregated. Finally, ACmix merges the
convolution and attention branches and combines them with two learnable
hyperparameters, α and β, resulting in Z = αZconv + βZatt.

3) Additional Details: Different operators all adopt a
residual connection as [3]. Meanwhile, we introduce an
SNR-adaptive strategy that utilizes a single (ϕ,θ) pair across
different SNRs. This approach has been widely shown to be
beneficial for channels with varying SNRs [2], [3], [8].

C. Decoding Level

Unlike the existing methods that directly feed the encoding
representations into the decoder for optimization [7], [8], we
divide the decoding process into two stages: denoising and
recovery. At the stage of denoising, we aim to eliminate the
influence of fading noise on the encoding representations to
maximize the correlation between source x̂ and its correlated
version x̂side. As stated in Selection III-C, MSE is adopted
for recovering s under a fixed compression ratio. Hence, the
optimization goal of x̂side is to help X̂ recovering. In other
words, the correlation between the two representations (i.e.,
x̂d, x̂d

side in Fig. 2) increases after denoising. At the stage of
recovery, two encoding representations are concatenated at
the channel dimension and jointly optimized by minimizing
the term log pθ(s | x̂side,xside) in (2).

Different from resource-constrained encoder, the decoder
at the base station is considered as computationally powerful.
In other words, the design of the decoder is not constrained
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Fig. 5. Validating the effectiveness of the proposed RDJSCC: (a) PSNR performance of different methods when R = 1/16. (b) PAPR for different
clipping ratios ρ . (C) Model capacity of different encoders.

by model capacity. Therefore, both denoising and recovery
stages employ convolutional neural networks.

V. EXPERIMENTS

Next, we validate the performance of the proposed
RDJSCC. First, we present the simulation settings. Then,
we evaluate and analyze the performance of the proposed
method.

A. Simulation Settings

1) Dataset: The KITTI dataset is adopted, which consists
of stereo image pairs, with each pair captured by two
cameras simultaneously. We use 1,576 pairs for training, 790
pairs for validation, and 790 pairs for testing. Each image,
originally with a resolution of 375 × 1242 pixels, is center-
cropped and downsampled to 128 × 256 pixels [13].

2) Implementation Details: The modulation and channel
parameters are set as Np = 2, Ns = 3, Nc = 2048,
Lcp = 16, L = 8 and γ = 4. The number of reduction
ratio r of involution is empirically set to 4. The number of
groups G is set to 1, 8, and 2 in the order of stacking to
meet the requirements for different input and output channel
dimensions. All experiments are optimized based on Adam
with a learning rate of 10−4. The batch size is set as 5, and
the number of training epochs is set to 200.

B. Performance Evaluation

To validate the effectiveness of our proposed framework,
we assess it from three perspectives: performance analysis,
PAPR reduction, and model capacity analysis, which
correspond to the trade-offs discussed in Section IV.

1) Performance Analysis: As shown in Fig. 5(a), we
present the PSNR performance from different levels.
Notably, all methods are trained with under mixed SNR Γ ∈
U(−5, 5), which is the same as [2], [3], [8]. “Direct+AWGN”
indicates direct transmission using the original model over
an AWGN channel without additional techniques to counter
fading, serving as an upper bound. “Direct+Fading” signifies
direct transmission over the fading channel. The distributed
encoder and the joint decoder are the same as [3].

Comparing “Direct+AWGN” with “Direct+Fading”, we
observe a performance degradation in the latter, indicating
that severe fading contaminates the encoded representation,
thereby impairing the correlation among distributed sources.
“Modulation+Fading” corresponds to the improvement at the
modulation level described in in Section IV-A. Compared
with “Direct+Fading”, “Modulation+Fading” shows a no-
ticeable performance gain, particularly at high SNR. This is
because, in high SNR environments, the correlation between
modulated sources is enhanced. Note that “Direct+Fading”
also introduce pilots, but the key difference is that “Modu-
lation+Fading” uses OFDM modulation. The performance
improvement observed in “Modulation+Fading” can be
attributed to the nature of OFDM, which operates on
multi-carrier transmission principles. Unlike single-carrier
systems, OFDM can approximate a frequency-selective
fading channel as multiple frequency-flat fading channels.
This characteristic allows OFDM to better handle fading
effects, resulting in enhanced performance. Meanwhile,
the orthogonality among subchannels avoids inter-carrier
interference.

Next, we further analyze the gains at the encoding and
decoding levels. “Modulation+Enc.+Fading” incorporates
encoding techniques (described in Selection IV-B) on top of
“Modulation+Fading”. As depicted in Fig. 5(a), there is an
obvious gain in comparison with “Modulation+Fading”. One
potential explanation is that the encoder based on parameter-
efficient operators can capture more complex dependency re-
lationships. Finally, combining “Modulation+Enc.+Fading”
with decoding level yields our proposed RDJSCC. Compared
with “Modulation+Enc.+Fading”, RDJSCC has a perfor-
mance gain, especially at low SNR, because the denoising
stage of the decoder plays a significant role in low SNR
environments. As SNR increases, the denoising performance
tends to saturate.

2) PAPR Reduction: Here, we explore the trade-off
between PAPR and performance by clipping. As shown in
Fig. 5(b), it is obvious that the reconstruction performance
decreases as clipping ratio decreases. This is attributed to
clipping disrupting the orthogonality among subchannels.



However, we can strike a trade-off between performance and
PAPR by setting an appropriate clipping ratio. For example,
the reconstruction performance with ρ = 3.0 is nearly
identical to the performance without clipping (ρ =∞). The
results are consistent with [9], [10]. This indicates that the
performance gain brought by OFDM against fading and the
low PAPR can coexist in a distributed image transmission
system.

3) Model Capacity Analysis: Next, we examine the trade-
off between model capacity and performance at the encoding
level, as shown in Fig. 5(c). We evaluate complexity using
two commonly used metrics: the number of floating-point
operations (FLOPs) and parameters. By substituting ACMix
and involution with convolution separately, we observe
changes in performance and complexity. Additionally, we
include the full convolutional architecture as a baseline
encoder [3]. Results indicate that the proposed method
is lightweight with a slight performance loss (within 0.5
dB). Although the proposed cannot enjoy the PSNR gains
from both ACMix and involution, the complexity decreases
significantly. Compared with [3], we achieve a better trade-
off between model capacity and performance. This indicates
that the encoder based on parameter-efficient operators can
achieve an approximate solution with fewer computational
resources.

PSNR =21.83 dB

PSNR =19.03 dB 

Proposed

Direct

Original

PSNR =21.43 dB 

PSNR =18.50 dB 

PSNR =21.63 dB 

PSNR =18.27 dB 

Fig. 6. Examples of the reconstructed images when testing at R = 1/16
and Γ = −3 dB.

4) Visual Comparison: In Fig. 5(a), we have already
shown the reconstruction performance of the proposed
method under a severe fading channel. To visually
demonstrate the effects of fading channel, Fig. 6 presents
the examples of the reconstructed images. Results show
that the proposed method achieves a better recovery quality
compared with direct transmission. We also observe that
the recovered image contains some noise points in our
proposed method, especially in the sky region (while areas
such as roads and cars have fewer noise points). The
noise originates from both compression and channel fading.
During transmission, these sky regions may have weaker
signal intensity, making them more prone to interference.
Conversely, areas with object tend to retain more details,
rendering them more resilient to interference. Compared with

direct transmission, the proposed method exhibits significant
improvement in noise reduction.

VI. CONCLUSION

In this paper, we propose a novel RDJSCC scheme,
specifically designed for distributed sensor networks under
severe fading conditions with imperfect CSI. We aim
to mitigate the effects of such imperfections at three
levels: modulation, encoding, and decoding, respectively.
Additionally, we explore the trade-offs between PAPR,
reconstruction performance, and complexity in practical
applications. We find that it is feasible to balance the
gains from OFDM in combating fading with a low PAPR
by setting an appropriate clipping threshold. Meanwhile,
deploying parameter-efficient operators at the encoder can
strike a balance between reconstruction performance and
complexity. We believe that the proposed RDJSCC scheme
plays a pivotal role in advancing distributed systems toward
practical deployment.
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