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Abstract—In this paper, we investigate the system performance
of deep joint source-channel coding (JSCC) for task-oriented
transmission in the Wyner-Ziv scenario, i.e., a distributed coding
scenario, aiming to improve the image reconstruction perfor-
mance and task accuracy. Unlike existing deep JSCC based
methods, we introduce regions of interest (ROI), which facili-
tates the effective utilization of side information for enhancing
task performance. Meanwhile, we incorporate a spatial analysis
mechanism to fuse the side information. By integrating these two
mechanisms, we propose a novel distributed deep JSCC scheme
that further leverages task relevance within the side information.
Simulation results show that our proposed scheme outperforms
the benchmark in terms of image reconstruction performance
and task accuracy. The code is available on the project website'.

I. INTRODUCTION

The rapid development of the Internet of Things (IoT)
[1] and edge computing [2] poses challenges to traditional
communication systems. To support the explosive growth of
interconnected smart devices and artificial intelligence (AI)
services, the sixth-generation communications (6G) must meet
demanding requirements, including low latency, multi-user
support, and intelligence. In recent times, semantic commu-
nications have emerged as a promising technology to address
these challenges. Unlike traditional bit-level communication
systems, semantic communications extract, transmit, and uti-
lize the semantic features of information at the semantic level.
With its exceptional feature extraction capabilities, deep learn-
ing (DL) provides robust support for the design of semantic
communications.

Recently, numerous semantic communication technologies
based on deep learning (DL) have been developed. Among
these, joint source-channel coding technology has sparked
broad interest and research enthusiasm [3]. By using an au-
toencoder architecture to extract compact representations, deep
joint source-channel coding (DeepJSCC) can improve content
awareness and enhance compression performance [4]. In point-
to-point communication scenarios, many mature schemes have
been proposed for channel adaptation [5], adaptive rate al-
location [6], and multi-task semantic communication [7]. In
addition, Yilmaz et al. [8] studied a distributed communication
scenario, and presented a deep joint source-channel coding
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Fig. 1: Task-oriented deep JSCC scheme with side informa-
tion(the Wyner-Ziv scenario).

(JSCC) communication framework for the Wyner-Ziv scenario
(DeepJSCC-WZ) [9], wherein only the decoder uses side
information for image decoding. By exploiting the correlation
among correlated sources, DeepJSCC-WZ employs multi-
scale feature fusion at the decoder, achieving enhanced image
reconstruction performance. However, DeepJSCC-WZ utilizes
side information in a relatively coarse manner, resulting in
limited performance improvement. To fully exploit the advan-
tages of distributed communication systems, the design and
utilization of side information have become critical questions.

It is noticed that, task-oriented semantic communications
(TOSC), which focus on extracting and transmitting essential
information for downstream tasks, have attracted growing
attention from both academia and industry [3], [7], [10]. Tong
et al. [11] introduced the information bottleneck principle into
TOSC, shifting the focus from image reconstruction to the
execution of semantic tasks. Hu et al. [7] proposed prioritizing
the transmission of more important semantic features by
ranking their importance, improving the system’s scalability
under varying channel conditions. Building upon the advanced
deep JSCC architecture [6], Tan et al. [12] utilized regions
of interest (ROI) to adapt the entropy model and enhance
task performance, albeit at the cost of increased encoder
complexity. However, these works solely focus on improving
task performance in point-to-point communication scenarios,
without exploring the utilization of correlated sources in
distributed scenarios.

In this paper, we propose a kind of ROI assisted deep JSCC
scheme for image reconstruction and semantic tasks in Wyner-
Ziv scenarios (see Fig. 1). The main contributions of this work
are summarized as follows:
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Fig. 2: Architecture of our proposed system of ROI-assisted distribution deep JSCC. The dashed line above represents the
multi-scale feature fusion proposed in [8], and the dashed line below represents the proposed ROI assisted SFT modules.

e A novel distributed deep JSCC scheme is proposed by
introducing ROI maps and the Spatial Feature Transform
(SFT), achieving a more refined fusion of side informa-
tion and enhancing image reconstruction performance.

e The proposed scheme leverages the SFT module to fuse
the task-related information embedded in ROI maps,
guiding image reconstruction and further improving task
performance.

II. SYSTEM MODEL

We consider the problem of task-oriented wireless image
transmission with side information only at the decoder. As
shown in Fig. 1, the transmitter consists of a stereo camera,
where the left and right cameras transmit highly correlated
images to the base station, which subsequently engages in
machine tasks. To align with prior works [8], [13], [14],
we assume that the image from the left camera is firstly
transmitted, and the base station uses this received image to
decode the image from the right camera.

The input image from the right camera, denoted as x €
REXWXH where W, H and C represent the width, height
and the number of channels of images, respectively, is first
encoded by a neural network encoder E, as z € C*, where ¢
denotes the parameters of the encoder and k is the length of
the encoded symbols, as given by

z = E4(x). (1)

In this work, we consider the system is power constrained,
hence we perform power normalization on the encoded sym-
bols z:

1, 2
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where P,,, denotes the average power of the encoded sym-
bols. The bandwidth ratio (BR) is defined as follows:

4L

CWH channel symbols/pixel. 3)

P

The channel inputs are then transmitted over an additive
white Gaussian noise (AWGN) channel with noise variance
02, ie., Z = z 4+ n, where n € CF consists of independent
and identically distributed (i.i.d) samples with the distribution
CN (0,07T).

The receiver then uses the side information to jointly decode
the received signals as follows:

x=Dy (Z; Xside)v 4)
where x € RE*WXH g the estimation of the input images x,
6 denotes the parameters of the decoder, and xjqe € RC*W>*H
is the side information, which is highly correlated with x and
has been transmitted to the receiver. Finally, the decoded image
is sent to a task execution network to obtain the final predicted
output:

y = F(), &)

where F;, is the task execute network with parameters 7, and
y denotes the task execution result of the receiver.

IIT. PROPOSED METHOD

In this section, we present the proposed distributed deep
JSCC scheme. We first describe the overall structure of the
architecture. Next, we introduce the ROI map generation
method and the SFT module [15].



A. Overview

Our DNN architecture is based on the DeepJSCC-WZ
model proposed in [8]. As shown in Fig. 2, the distributed
deep JSCC structure employed in our system is similar to
DeepJSCC-WZ, both utilizing an autoencoder-based architec-
ture. With its extensive set of parameters, the deep JSCC
framework can learn a compact representation of the in-
put images. The encoder maps the input image to a low-
dimensional latent vector, while the decoder reconstructs the
original image from this latent representation. Through this
process, the network learns a compressed representation aimed
at preserving essential semantic information from the input
image.

The encoder consists of three convolutional blocks, and
performs two downsampling operations. Each convolutional
block includes a convolutional layer with a kernel size of
5 X 5 and 256 channels, followed by the generalized divi-
sive normalization function and a PReLU activation layer.
The decoder is built with three deconvolutional blocks and
performs two upsampling operations. Meanwhile, the work in
[8] incorporates a multi-scale feature fusion structure, where
features from xgq. are extracted using an extractor that shares
parameters with the encoder E. These extracted features are
then strategically integrated with the received compressed fea-
tures at various stages and scaled along the channel dimension.
In this context, we adopt the similar approach and further
explore the utilization of side information by introducing the
ROI map and SFT modules.

B. ROI Map Generation Mechanism

Inspired by Gradient-weighted Class Activation Mapping
(Grad-CAM) [16], we extract ROI maps from side information
to guide the decoder in reconstructing of the image. The idea
behind Grad-CAM is to use gradient information activated
within the network to quantify the importance of each pixel
for the target concept through a weighted approach. In a
well-trained classification network, Grad-CAM generates an
ROI map by backpropagating gradients related to the target
concept. This map indicates which regions of the image
contribute significantly to the classification task. Next, we
describe the ROI map generation process.

First, we feed the image into a pre-trained classification
network to obtain the highest score 0°, where ¢ denotes the
class c. We then calculate the gradients of the activation feature
maps a' in the last layer with respect to o° as g%‘;, where [
denotes the Ith feature map. Next, we perform global average
pooling on the backpropagated gradients across the channel
dimension to obtain the weights w; for the feature maps as

follows: . 50
. 0
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where W and H represent the width and the height of the
feature maps, respectively. This weight signifies the relative
contribution of different feature maps to the final classification
decision. Using the obtained weights and the feature maps

themselves, we perform a weighted combination and apply a
ReLU layer to obtain the ROI map M:

M = ReLU <Z wlcal> ) (7)
1

Finally, the ROI map undergoes image interpolation to
restore its scale to match the original image size. Fig. 2
provides a sample ROI map generated by Grad-CAM from
the side information x4q4.. Despite transformations applied to
the image, the ROI map still captures the approximate location
of pixels corresponding to the target.
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Fig. 3: Illustration of the Condition network and Spatial Fea-
ture Transform (SFT) layer [15]. | indicates down-sampling.

C. Spatial Feature Transform Mechanism

To further leverage the side information at the decoder,
we introduce the Spatial Feature Transform (SFT) module
[15]. The SFT module is derived from adaptive feature trans-
formation, initially proposed for style transfer [17]. Unlike
traditional methods that rely on normalization of intermediate
feature maps, SFT employs direct affine transformations [18].
This approach enhances the adaptability and flexibility of
feature extraction in response to different inputs or contexts.

The introduced SFT module is illustrated in Fig. 3, where
the Condition network utilizes external priors to generate
appropriate inputs for the SFT layer. Initially, ROI map M is
extracted from the side information using Grad-CAM. After
concatenating M with the side information x4, along the
channel dimension, the combined input is fed into the Condi-
tion network to obtain intermediate conditional semantic fea-
tures c; at different scales, where c; denotes the ith condition



semantic features. The intermediate features are then processed
by distinct SFT layers to apply scale adjustments to the
intermediate representations of the decoder. Each SFT layer
uses c; to generate a set of affine transformation parameters
(77, B). These parameters are applied to each element in the
intermediate feature maps f produced by the decoder. Finally,
an affine transformation is applied to the intermediate feature
maps f based on (v, ), given by:

SFT(f,c;) =~v & f + 8, (8)

where © denotes element-wise multiplication.

Algorithm 1 Image reconstruction training algorithm

Input: An image dataset {x!,...,x"} with n images, side
information dataset {xL.,...,x%.}.
Output: The parameterized networks Ey, Dyg.
1: Initialize encoder and decoc(le)r’s parameters W (¢ and 6);
6)(7)

2: ROI map generation: xgge —— M;
3: while Stop criterion is not met do

Ey(- Do (“,Xside)
4 Forward: x —2U), 5 channel, 5 Do) x;
5: Loss: ‘C(X7 )A() = Z(X7Xside ) MSE(Xa }A(),

GDlmin

6:  Back-propagation: £ — 5r=;
7. Update parameters: W = W — lrg—vﬁv;
8: end while

D. Training Loss

To validate the effectiveness of the proposed structure for
both image reconstruction and task execution, we evaluate our
algorithm from two aspects: Algorithm 1 and Algorithm 2.

Algorithm 1 illustrates the entire training process for image
reconstruction. It undergoes end-to-end training in an unsuper-
vised manner, generating AWGN channel samples randomly
throughout the training process. The objective is to reconstruct
the input image by minimizing a specified distortion measure.
The loss function for Algorithm 1 is as follows:

>

(%,Xside ) € Dirain

L(x,x) = MSE(x, x), )

where MSE(x,%) £ L ||x — x| is the mean squared error
(MSE) loss and m = CWH.

Algorithm 2 is designed for task-oriented semantic com-
munication scenarios, where the reconstructed images are
further sent to a task execution network, as shown in Fig.
1. The evaluation metrics encompass both the distortion in
image reconstruction and the accuracy of the task. Therefore,
following the reasoning in [11], we design a new loss function
that combines weighted losses, as follows:

> MSE(x,%)+ A CE(y,3),

(%, Xside ) € Dirain

L(x,%x) = (10)

where y denotes the label corresponding to the image x,
CE(y,y) represents the cross-entropy loss, and A controls the
trade-off between reconstruction quality and task performance.

Details regarding the specific training procedure are provided
in Algorithm 2.

Algorithm 2 TOSC training algorithm

Input: An image dataset {x!,...,x"} with n images, side
information dataset {x}y., ..., x%.}-

Output: The parameterized networks Fg, Dyg.
1: Train a task network I}, with the input dataset;

ROI map generation: Xgiqe M> M,

Train Ey, Dg using Algorithm 1;

Load pre-trained network’s parameters ¢, 6 (W) and 7,
freeze n;

while Stop criterion is not met do

Ey() channel  ~ Do (- Xsid A ().
Forward: x —s z z C i) X 5y,

Loss: L£(X,X) = ) (x,xq ) MSE(x,%X) + A - CE(y, y):
€ Dhrain
. Back-propagation: £ — g—w;
9:  Update parameters: W =W —
10: end while
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IV. NUMERICAL RESULTS

In this section, we conduct a series of experiments based on
the two algorithms proposed in the previous section, focusing
on two performance metrics: image reconstruction quality and
task accuracy.

A. Settings

1) Dataset: We perform the experiments on the CIFAR-
10 dataset, which comprises 50,000 training images and an
additional 10,000 validation images, each with a size of
32 x 32 pixels, across a total of 10 image classes. To generate
correlated images to serve as side information, we adopt a
method for constructing correlated sources similar to that
described in [19].

2) Metrics: We employ a classification task as the artificial
intelligence task, using ResNet50 [20] as the classification
network. The performance of this task is measured by classifi-
cation accuracy. The quality of reconstruction is assessed using
peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM), a metric more aligned with human perception
of images.

3) Benchmarks: Firstly, in terms of image reconstruction,
we use the proposed ROI-assisted distributed deep JSCC
(marked as DeepJSCC-WZ-ROI) as the baseline, and compare
it with methods including DeepJSCC [4] and DeepJSCC-
W2Z [8]. All three approaches are trained using Algorithm
1. Secondly, for task-oriented semantic communications, the
methods comppared include DeepJSCC and DeepJSCC-WZ
which are trained using Algorithm 2. In the ablation study,
the models DeepJSCC-WZ-zeros-ROI and Deep]SCC-WZ-
norms-ROI are trained using the proposed method. It needs
to be pointed out that, during the testing phase, the decoder
receives ROI maps that consist entirely of zeros or random
numbers following a normal distribution. DeepJSCC-WZ-SFT
is trained using the structure shown in Fig. 2, where the input
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Fig. 4: Comparisons of different methods on different eval-
uation indicators in image reconstruction scenarios for BR
p=1/32 and 1/16.

to the Conditional network is only the side information Xgqe,
meaning that no ROI map is used during training.

4) Implementation Details: The learning rate is set to 1 x
10~%. The batch size is 64. The average power constraint P
is set to 1.0. The Adam optimizer is employed to minimize the
training loss in (9) and (10). The signal-to-noise ratio (SNR)
of the AWGN channel is maintained at 5 dB during training,
while the test SNR ranges from 0 to 9 dB. The trade-off factor
Aissetto 1 x 1073,

B. Experiment Results and Analysis

1) Reconstruction Performance: Fig. 4 illustrates the image
reconstruction performance under various SNR conditions.
From Fig. 4(a), it can be observed that the proposed scheme
achieves a performance gain in terms of PSNR. The im-
provement of the DeepJSCC-WZ over DeepJSCC is attributed
to the utilization of correlated information from the side
information. The performance gain of the proposed scheme
over Deep]SCC-WZ is partly due to the introduction of the
ROI map, which captures part of the original image’s contour
information. Moreover, the SFT module provides more deli-
cate adjustments to the intermediate features of the decoder.
In Fig. 4(b), it is evident that the proposed approach not only
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Fig. 5: Comparisons of different methods on classification and
reconstruction in TOSC scenarios.

enhances PSNR performance but also improves metrics that
better align with human perception of image quality.

2) Task Execution Performance: Fig. 5 depicts the variation
in task performance and image reconstruction performance of
the different methods across various SNR conditions and BR
values. From Fig. 5(a), it can be observed that DeepJSCC-WZ-
ROI provides a significant improvement in task performance
compared to the other schemes. DeepJSCC-WZ shows an
enhancement in task performance over DeepJSCC, which is
attributed to the use of side information, enhancing image
reconstruction quality. DeepJSCC-WZ-ROI further improves
task performance compared to DeepJSCC-WZ, highlighting
the effectiveness of incorporating ROI maps and the SFT
module. Fig. 5(b) illustrates that the reconstruction quality of
the proposed scheme still surpasses that of other methods in
TOSC scenarios.

Fig. 5(c) and Fig. 5(d) demonstrate that the proposed
scheme achieves higher compression performance, especially
at lower BR values, where the performance gains are more no-
ticeable. As the BR values increase, both image reconstruction
and task execution performance tend to approach saturation
due to the increased amount of transmitted information.

3) Ablation Study: Fig. 6 presents ablation experiments to
validate the effectiveness of introducing the ROI map and
SFT modules. Firstly, Fig. 6(a) shows that DeepJSCC-WZ-
zeros-ROI results in a decrease in task performance. This
decline is attributed to the absence of a meaningful ROI map.
DeepJSCC-WZ-norms-ROI causes performance to degrade to
the level of DeepJSCC-WZ. This is because the incorrectly
distributed ROI map leads the SFT layers to guide the de-
coder’s intermediate features in a direction that is detrimental
to performance. Additionally, Fig. 6(b) reveals that introducing
an all-zero ROI map results in only a minimal decline in PSNR
performance, contrasting with the more significant decrease
in task performance. This observation further underscores the
importance of the ROI map obtained from Grad-CAM for task
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relevance.

Based on the two figures, DeepJSCC-WZ-SFT exhibits
slightly better image reconstruction performance compared
to DeepJSCC-WZ-ROI, and there is a relatively noticeable
difference in task accuracy. This indicates that the SFT
modules achieve a more precise fusion of side information,
thereby enhancing image reconstruction quality. Additionally,
by further introducing ROI maps as an external condition
for the SFT module, the task performance can be further
improved. These results indicate that the performance gains
of our proposed scheme stem from the integration of the ROI
map and SFT module.

V. CONCLUSION

In this paper, we devise a ROI-assisted deep JSCC scheme
for machine task image transmission in distributed scenarios.
To more effectively utilize the correlation among correlated
sources and better serve downstream tasks, our approach
incorporates side information and employs ROI maps along
with SFT modules. This combination ensures superior image
reconstruction quality and enhances task accuracy. Experi-
mental results confirm the effectiveness of our method in
achieving nuanced information fusion for image reconstruction
and improving task performance in TOSC scenarios. We
demonstrate its robustness and flexibility, and highlight its

potential for diverse applications in distributed communication
scenarios.
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