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Abstract—Due to the computing capability and memory
limitations, it is difficult to apply the traditional deep learning
(DL) models to the edge devices (EDs) for realizing automatic
modulation classification (AMC). In this paper, a lightweight
neural network for decentralized learning-based automatic
modulation classification (DecentAMC) method is proposed.
Specifically, group convolutional neural network (GCNN) is
designed by replacing the standard convolution layer with the
group convolution layer, replacing the flatten layer with the
global average pooling (GAP) layer and removing part of
fully connected layers. DecentAMC method is achieved by the
cooperation in which multiple EDs update and upload the model
weight to a central device (CD) for model aggregation to avoid
the data privacy disclosure. Experimental results show that
the proposed GCNN-based DecentAMC method can improve
training efficiency to about 4 times and 57 times than that
of GCNN-based centralized AMC (CentAMC) and CNN-based
DecentAMC respectively. GCNN-based DecentAMC method can
effectively reduce the communication cost and save storage of
EDs when compared with CNN-based DecentAMC. Meanwhile,
the time complexity and the space complexity of GCNN is
significantly decreased when compared with CNN and SCNN,
which is suitable to be deployed in EDs.

Index Terms—Automatic modulation classification, decentral-
ized learning, lightweight neural network.

I. INTRODUCTION

Automatic modulation classification (AMC) is a promising
technique that can be applied at the receiver to distinguish
the different types of modulated signals [1]. Recently, AMC
has played a significant role in both military and civilian
communications, such as cognitive radio and link adaptation.
In the past, typical methods of AMC included likelihood-
based AMC and feature-based AMC [2]. Traditional machine
learning (ML), such as decision tree and k-nearest neighbor
(KNN), was also widely used in feature-based AMC as a
classifier. However, these traditional methods need to extract
the features manually.

In recent years, deep learning (DL) has made great
achievements in many fields, such as wireless communications
[3]-[6] and cyber security [7]-[9]. Hence, more and more
scholars tried to apply DL to the feature-based AMC for
achieving better performance. F. Meng et al. proposed a
convolution neural network based AMC (CNN-AMC) [10],
which can outperform the feature-based AMC and has a

faster computing speed with parallel computation. P. Qi et
al. addressed methods to realize deep residual networks
(ResNet)-based AMC [11], which can efficiently distinguish
among sixteen modulated signals. However, existing DL-
based AMC methods generally use the algorithm of local
learning (LocalAMC) or centralized learning (CentAMC) with
CNN or ResNet [10], [11], [13]. The LocalAMC means that
each edge device (ED) relies on a limited local dataset for
training without using datasets from other EDs, which leads
to limited performance. The CentAMC means that multiple
EDs upload the local datasets to a central device (CD) for
training, which has a better performance because training the
model with multiple datasets. However, CentAMC challenges
the computing capability and storage of CD and threats the
privacy security of data during the process of dataset sharing.

To solve the problems of Local AMC and CentAMC, a
distributed learning-based AMC (DistAMC) method based on
CNN was proposed in [12], which can realize decentralized
training of data by the way of multiple devices uploading the
model weight rather than datasets to a CD. However, the model
size of CNN adopted in DistAMC is large and the model
weight of CNN needs to be updated frequently, which lead
to that the communication cost and the training efficiency of
DistAMC method based on CNN is intolerable. In addition,
CNN has a high complexity and thus is hard to deploy to
EDs. Hence, we attempted to deploy lightweight network in
the decentralized learning-based (DecentAMC) method. Many
scholars have adopted different ways to realize lightweight
network. Y. Lin et al. [13] proposed an improved lightweight
AMC method by considering the pruning technology to reduce
the size of neural networks for promising edge applications.
A lightweight neural network based on separable convolution
(SCNN) for AMC was proposed in [14] in which the model
complexity of SCNN was decreased by about 94% when
compared with CNN.

In this paper, a more lightweight neural network based on
group CNN (GCNN) is proposed for DecentAMC method. The
main contributions of the proposed GCNN-based DecentAMC
method include:

¢ The proposed GCNN occupy less memory and computing

capability of IoT devices because the space complexity



is decreased by at least 98.30% and the time complexity
is decreased by at least 99.58%, compared with CNN.

e The proposed GCNN-based DecentAMC method can
increase the training efficiency to at least 3.99 times than
that of GCNN-based CentAMC with the cooperation in
which multiple EDs update and upload more light model
weight to a CD for model aggregation.

e The proposed GCNN-based DecentAMC method can ef-
fectively reduce the communication cost when compared
with CNN-based DecentAMC.

II. PROBLEM FORMULATION

A. Signal Model

We assume that the model of the unknown single-carrier
(SC) modulated signals as
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where wu(k) represents the unknown modulated signals
received by receiver, and \ represents the gain of the channel,
and f; represents the frequency offset, and 6 represents the
phase offset, and 7 represents the timing offset, and h[l : | =
0,1,---,L—1] represents the channel impulse response (CIR)
of Rayleigh fading channel, L is the length of the CIR, and
q(k) is the baseband signal sequence, and o(k) is additive
white Gaussian noise, and K is the number of sampled points
from the signals.

The in-phase component (I) and quadrature component
(Q) of u(k) called 1IQ signals are input to neural network
for modulation classification and expressed as: I =

{realfu(k)]}r_y', and Q = {imag[u(k)]}r_".

]modK (1)

B. The DL-based AMC Methods

DL-based AMC method belongs to feature based AMC
method, which can complete feature extraction and classifi-
cation simultaneously. The modulation type of the received
modulated signal belongs to the set D = {d;,j =
0,1,---,J — 1}, where J represents the number of
modulation types. DL-based AMC can be expressed as: d; =
Fa;ep([I;Q], P), where F(-) is the function of DL-based
AMC classifier, and P represents the parameter of the network.
The location of DL-based AMC method in communication
system is shown in Fig. 1
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Fig. 1. The location of DL-based AMC method in communication system.

We adopt cross entropy (CE) loss function with /5
regularization to compile the model, which is expressed as

R
Lop =~ S uloglF(1:QL, Pl + AQ(F (T Q). P),
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where R represents the size of the training samples, and y,
is the true label, and Q(-) is a penalty function to avoid
overfitting, and A is to balance the penalty function.

III. THE PROPOSED AMC METHOD

A. The Proposed Lightweight Network

To design lightweight network for AMC, we start with
standard CNN [12] and lightweight network named SCNN
[14] for AMC, and then a more lightweight network called
GCNN is proposed for AMC.
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Fig. 2. The structures of CNN, SCNN and GCNN.

1) CNN for AMC: The structure of standard CNN for
AMC is shown in Fig. 2(a). Two standard convolutional layers
(ConvlD) are used to extract signal features. One flatten
layer transforms multidimensional inputs into one-dimensional
outputs and is usually located between convolutional layer and
the fully connected (FC) layer. Three FC layers realize the
classification of the final modulated signal.

2) SCNN for AMC: The structure of lightweight network
called SCNN for AMC is shown in Fig. 2(b). The SCNN is an
improvement of lightweight on CNN. Specifically, separable
convolutional layer (Separable Conv1D) is adopted to replace
the second standard convolutional layer of CNN and part of
FC layers of CNN are removed.



3) The Proposed GCNN for AMC: Depends on the basis
of the research on CNN and SCNN, a new lightweight
network called GCNN is designed. The structure of GCNN
is shown in Fig. 2(c). The complexity of the neural network
includes time complexity and space complexity. The time
complexity is described by floating point operations (FLOPs),
while the space complexity is represented by parameters
and output feature maps. The complexity of CNN can be
further reduced by replacing the second standard convolutional
layer and the flatten layer with the group convolutional
layer (Group Conv1D) and the global average pooling (GAP)
layer respectively and by removing part of FC layers. Group
convolution was first applied in AlexNet for training on
multiple GPUs because of the limitation of single GPU [15].
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Fig. 3. Comparison of standard convolution and group convolution. Cjy,,
Cout, M; and K s respectively represent the number of input channels, and the
number of output channels, and the length of out feature maps of convolutions,
and the size of convolution kernel. G is the number of groups for group
convolution. (a) standard convolution: the convolution kernels are conducted
on all of the input channels. (b) group convolution: the input channels and
the convolution kernels are equally divided into G groups when the number
of groups is not 1.

The structure comparison of group convolution and standard
convolution is shown in Fig. 3. The model complexity
comparison of group convolution and standard convolution
[16] can be calculated by
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where S%, ., SY,,, and Fy, respectively represent parameters,

out feature maps, and FLOPs of standard convolution; S gmup,
SY oup> and Fgroy, Tespectively represent parameters, out
feature maps, and FLOPs of group convolution.

It is obvious that the FLOPs and parameters of standard
convolution are G times than that of group convolution, and
the out feature maps are the same with group convolution by
observing Eqgs. (3)~(5). It means that group convolution can
generate the same size out feature maps with a smaller number

of parameters and computation. This is the theoretical basis for

designing lightweight network using group convolution to take
place of standard convolution. In addition, to further lighten
the designed network, we replace the flatten layer with GAP
to achieve feature compression and to avoid overfitting, and
remove the first two FC layers. As is shown in Fig. 2(c),
the final GCNN has only four layers, where ReLU activation
function is applied in the first convolution layer and the second
group convolution layer, and the last layer uses softmax as the
activation function. Each layer is added batch normalization
(BN) and dropout to avoid overfitting except for the last FC
layer, meanwhile the BN can accelerate training of the model.

B. The Proposed GCNN-based DecentAMC Method

Traditional IoT devices generally adopt CentAMC method,
as is shown in Fig. 4(a). Multiple EDs upload the local datasets
to a CD, and then the CD trains the model based on the
aggregated datasets. When the training is finished, the model
weight W of the CD is downloaded to the EDs for testing. As
shown in Fig. 4(b), compared with CentAMC method, each
ED uploads the model weight instead of the dataset to the CD
in DecentAMC method. It needs to be pointed out that the
DecentAMC method falls with Federated Learning (FL) [17],
which applies the idea of FL to model training process for
AMC. The GCNN-based DecentAMC method consists of the
following 4 steps, which are shown in Algorithm 1.
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Fig. 4. The structures of CentAMC and DecentAMC.
1) Model initialization and parameter broadcasting:

The CD builds a lightweight model (GCNN model) and
initialization parameters, such as the batch size, model weight,



learning rate and so on. Then, the CD broadcasts the built
model and initialized parameter to the EDs.

2) The model weight of the EDs updating and uploading:
Each ED downloads the built model and initialized parameter
from the CD, and then updates the local model weight based
on the local datasets by Adam. When the updating is finished,
each ED uploads their model weight to the CD. Here, we
assume that the EDs upload the model weight wj* once every
training epoch, where the ¢-th epoch model weight of the n-th
ED as wy.

3) The EDs model weight aggregation by CD: The trained
model weight is uploaded from each ED to the CD and the CD
averages the received model weights. Model weight averaging
isused as: Wiy = %25:1 wy', where Wy is the ¢-th epoch
global model weight.

Algorithm 1: The GCNN-based DecentAMC Method.
Input: 1Q samples and corresponding labels in n-th
ED dataset.
Output: Wr
1 CD initializes a GCNN model and broadcasts the
model and initial parameters to EDs.
2 foreach ED in parallel do

3 ED downloads the built model.

4 ED initializes parameter.

5 end

6 forn=1--- N do

7 Each ED downloads the global model weight.

8 fort=0,---,7 do

9 Each ED updates the local model weight wy'.

10 Each ED uploads their updated model weight.

11 end

12 CD receives the weight and averages them and
obtains updated global model weight
Wigr = &30, wil.

13 end

14 return Wrp

4) The global model weight updating: After the CD gets
the global model weight, each ED downloads the global model
weight from the CD and replaces the original weight with the
global model weight, i.e., w}' | = Wy41,n = [1, N] and then
repeat 2) ~ 4) until the loss convergence.

IV. EXPERIMENTAL RESULTS

To test the generalization classification performance of the
proposed AMC method, we use two different datasets for
training, named D;: {BPSK, QPSK, 8PSK, 2FSK, 4FSK,
8FSK, 16QAM}, Ds: {BPSK, QPSK, 8PSK, 2FSK, 4FSK,
8FSK, 16QAM, 128QAM, 256QAM}. We assume that there
are 12 EDs and 1 CD. Hence, 24 different ED datasets are used
to simulate 12 different EDs. The size of training samples,
validating samples and testing samples of each ED are 6, 000,
1,000 and 10, 000 respectively. The signal to noise ratio (SNR)
of ranging from —10 dB to 20 dB with 2 dB as interval

is used. The number of the training epochs is set as 500.
The parameters {«, 31,32} for Adam are pre-set values of
Keras, i.e., {0.001,0.9,0.999}. The balance factor A is set as
0.005. The experiment platform is GTX 2080Ti and the DL
framework is Tensorflow 1.10.0 with Keras 2.2.4.

A. The Setting of K and G
TABLE I

THE ACCURACY, PARAMETERS, FLOPS AND TEST TIME OF GCNN-BASED
DECENTAMC IN D2 UNDER DIFFERENT K.

Metric K=64 K=128 K =256 K =512
Accuracy 63.31% 70.58% 74.42% 77.63%
Parameter 7,049 13,385 26,057 51,401

FLOPs 144,299 269,611 520,235 1,021,483

Test time (ms/sample) 0.220 0.231 1.159 1.291

As is shown in TABLE I, with the increasing the number of
sampling points K, the classification performance of GCNN-
based DecentAMC is improved obviously. Meanwhile, the
time and space complexity of the model become higher and
the test time of each samples is longer. Therefore, we adopted
a compromise between classification performance and model
lightweight and set K as 128.

TABLE 11
THE ACCURACY, PARAMETERS, FLOPS AND TEST TIME OF GCNN-BASED
DECENTAMC IN Dy UNDER DIFFERENT G.

Metric G=2 G=4 G=38 G =16
Accuracy 69.75%  70.16% 70.58% 69.61%
Parameter 37,961 21,577 13,385 8,289

FLOPs 736,525 425,239 269,611 191,827

Test time (ms/sample) 0.359 0.262 0.231 0.206

The group number G is a key hyper-parameter, which
influences the time and space complexity and classification
performance of the model. As is shown in TABLE II, GG needs
to be set as a divisor of the size of convolution kernel (K)
and we set different group numbers to make a balance between
model complexity and classification performance. Finally, it is
appropriate to set GG as 8.

B. Loss Evaluation & Classification Performance

The training loss and the validation loss are given in Fig.
5. The validation loss is almost consistent with the training
loss, which indicates that the algorithm is perfectly trained.
The loss gap is nearly 0.1 in D; and 0.15 in Dy between
GCNN-based on DecentAMC and CNN-based on CentAMC,
which means that GCNN-based on DecentAMC has similar
classification performance with CNN-based on CentAMC.

The correct classification probability (PCC) is generally
adopted to describe the recognition and classification perfor-
mance, which can be written as Pl = NJ”\?:”” x 100%, where
P!, is the correct classification probability at SNR= i dB, and
N oot is the number of corrected classification samples at
SNR= ¢ dB, and Ny is the number of the testing samples.
The average value of P!, is P.



TABLE III

THE FLOPS, PARAMETERS, OUTPUT FEATURE MAPS, Pcc,

TCent AND TPecent (L T,) OF THE THREE NETWORKS.

train train

Network/Dataset FLOPs Parameters Output feature maps Pec TSZ%(S) Ttlf gfﬁ"t(-i—Tw)(s)
CNN/D; 63,007,759 2,202,183 33,159 84.71% 103.88 7.41 (+1059.90)
SCNN/D; 1,214,955 71,239 49,161 84.19% 56.23 5.08 (+36.15)
GCNN/Dq 267,153 (99.58%) 13,255 (99.40%1) 24,647 (25.67%)) 82.75% (2.31%1) 60.72 5.08 (+10.12)
CNN/Ds 63,012,137 2,202,441 33,161 72.43% 139.76 8.35 (+1060.32)
SCNN/D> 1,493,509 87,625 49,163 71.63% 97.49 6.41 ( +44.04)
GCNN/D> 231,712 (99.63%1) 13,385 (99.40%) 24,649 (25.67%.) 70.68% (2.42%) 82.98 8.61 (+10.17)

Note: The red numbers represent the model complexity, Po and the time to transfer weight gap between GCNN and CNN.
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Fig. 5. The training loss (a) and the validation loss (b) of the CentAMC and
the DecentAMC based on CNN, SCNN, and GCNN in D7 and D» datasets.

The curves of P!, is shown in Fig. 6(a). The experiment
results show that there is a little classification performance
loss between GCNN-based DecentAMC and CNN-based
CentAMC, where the maximum classification performance
gap is nearly 5% in D; and 7% in D,. The average
classification performance Poc gap is nearly 2% either in Dy

or Do, as is shown in TABLE III. In addition, GCNN-based
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Fig. 6. Classification performance. (a) The P?. of CNN-based CentAMC,
SCNN-based CentAMC, and GCNN-based DecentAMC in D1 and D2. (b)
the confusion matrix of GCNN-based DecentAMC in Do when SNR = 15
dB.

DecentAMC has a limited classification performance for high-
order modulation schemes such as 128QAM and 256QAM
when observing Fig. 6(b).

C. Other Performance Analysis

1) Training Efficiency: The time to transfer weight can

be calculated as: T,, = W’: + %, where W,,, represents

Vu




the model weight, and vy, and vgo.,, respectively represent
downlink and uplink rate. And hence, training efficiency can
be defined as: E; = m, where T}qin represents
average training time per epoch. According to TABLE III,
TEent and TPecent represent average training time per epoch
when adopted CentAMC and DecentAMC respectively. It is
clear that the training efficiency of DecentAMC is higher than
that of CentAMC when adopted lightweight networks (SCNN
and GCNN). In addition, the training efficiency of GCNN is
higher than that of GCNN-based CentAMC and CNN-based
DecentAMC. Specifically, the training efficiency of GCNN-
based DecentAMC is 3.99 times than that of GCNN-based
CentAMC in D and 4.42 times in D5, and 70.22 times than

that of CNN-based DecentAMC in D and 56.90 times in D.

2) Communication Cost: The communication cost of
CentAMC is defined as: Coent = N(W,,, + Wy), where
Ccent represents the communication cost of CentAMC,
and W, represents dataset size and N is the number of
EDs. Similarly, the communication cost of DecentAMC
can be defined as: Cpecent = 2NW,, T, where Cpecent
represents the communication cost of DecentAMC, and
T represents the number of average training epochs of
DecentAMC and we assumed that 7' equals 250 epochs to
calculate the communication cost. As is shown in TABLE
1V, the DecentAMC consumes more communication overhead
than CentAMC and lightweight network can reduce the
gap of communication overhead between CentAMC and
DecentAMC. In addition, the communication cost of GCNN-
based DecentAMC is less than CNN-based DecentAMC
and SCNN-based DecentAMC because GCNN has more
lightweight global weight that need to be updated between
EDs and CD.

TABLE IV
THE COMMUNICATION COST AND MODEL SIZE OF THE THREE NETWORKS
BASED CENTAMC AND DECENTAMC.

Model/Dataset Ceoent CpDecent Model size
CNN/D; 1.28 GB | 155.28 GB 8.86 MB
SCNN/D; 0.98 GB 5.15 GB 315.99 KB
GCNN/D; 0.97 GB 1.44 GB 122.92 KB
CNN/Do 1.55 GB | 155.30 GB 8.86 MB
SCNN/D> 1.26 GB 6.42 GB 381.53 KB
GCNN/D> 1.25 GB 1.45 GB 123.18 KB

3) Model Complexity: As is shown in TABLE III.
Compared with CNN, the time complexity of GCNN is
decreased by 99.58% in D; and 99.63% in Do, and the space
complexity of GCNN is decreased by nearly 98.30% in D; and
Dy, while the P, is decreased by less than 3%. In addition,
the model size of GCNN takes up less storage according
to TABLE IV, which means that it is appropriate to deploy
GCNN to EDs. Compared with SCNN, the time complexity
of GCNN is decreased by 80.64% in D; and 83.39% in Do,
and the space complexity of GCNN is decreased by 68.30%
in Dy and 73.53% in Do, while the P,.. is decreased by less
than 0.86%.

V. CONCLUSIONS

In this paper, we proposed a GCNN-based DecentAMC
method to realize AMC. Compared with CNN, the model
complexity of the proposed GCNN is decreased significantly
with a limited P.. loss. In addition, the proposed GCNN-
based DecentAMC method can increase the training efficiency
whether compared with GCNN-based CentAMC or CNN-
based DecentAMC. Meanwhile, the communication cost
of GCNN-based DecentAMC can effectively reduce the
communication cost and save storage of EDs when compared
with CNN-based DecentAMC.
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